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RELATIONAL DATABASE DESIGN



Data Dependency/Functional Dependency

A functional dependency is an association between two attributes of the same
relational database table. One of the attributes is called the determinant and the
other attribute is called the determined. For each value of the determmant there is
associated one and only one value of the determined.

If A is the determinant and B is the determined then we say that A functionally
determines B and graphically represent this as A -> B. The symbols A & B can also
be expressed as B is functionally determined by A.

Since for each value of A there is associated one and only one value of B.

The following table illustrates A ———— > B:

A B
1
4
9

1
2
3
4 16
2
7




Data Dependency/Functional Dependency

In this table A does not functionally
determine B.

A B
1 1
2 4
3 9
4 16
2 4
3 11
7 9

Since for A = 3 there is associated more than
one value of B.

Functional dependency can also be defined
as follows: |

An attribute in a relational model is said to
be functionally dependent on another
attribute in the table if it can take only one
value for a given value of the attribute upon
which it is functionally dependent.



Data Dependency/Functional Dependency

A functional dependency denoted (FD) is denoted by X — Y, between two sets of
attributes X and Y that are subset of relation R specifies a constraint on the tuples
that can form a relation state of r of R. The constraint is that, for any two tuple t1 and
t2 in r that have t1[X] = t2[X], we must have t1[Y] = t2[Y].

It means that the values of the Y of a tupie in r depend Upon or determined by, the
value of X component. Alternatively, the values of X component of a tuple uniquely
(or Functionally) determine the values of the Y component.

In other words, there is a functional dependency from X to Y or that Y is functionally
dependent on X. | | | |

Thus, X functionally determines Y in a relation schema R if and only if, whenever two
tuples of r(R) agree on their X-value, they must necessarily agree on their Y value.



Data Dependency/Functional Dependency

For example, in the relation schema PROJECT of the employees, the following
functional dependencies should hold-

1. eno— ename

2. - pno — pname, location

3. Eno, pno — hours

These functional dependencies specifies that

1. The value of an employee’s number (eno) uniquely determines the employee
name (ename).

2. The value of project number (pno) uniquely determines that prOJect name
(pname) and project location (location). '

3. A combination of eno and pno values uniquely determines the number of hours
the employee works on the project per week.

Alternatively, we can say that ename is functionally determined by eno and so on.

PROJECT SCHEMA hours | ename | pname | location
FD 1
FD 2
D3




Data Dependency/ Funetlonal Dependency

Types of Functional Dependencies

There are many types of functional dependencies that depending on different
criteria-

¥

=AW

Full Functional Dependency

Partial Dependency

Transitive Dependency

Trivial and Non-trivial Dependency

Full Functional Dependency:

For a relation schema R and a FD, A S B, B is fully functlonally dependent on A if
there is no C, where C is proper subset of A, such that C — B.

The Dependency A — B is left reduced, that is, there is no extraneous attributes
in left side in the dependency.

Partial Dependency:

A functional dependency that holds in a relation is partial when removing one of
the determining attributes gives a functional dependency that holds in the
relation.

E.g. if {A,B} - {C} but aIso {A} = {C} then {C}is partlally functlonally dependent
on {A,B}.




Data Dependency/ Functlonal Dependency

Partial Dependency:

Partial Dependency is a form of Functional dependency that holds on a set of
attributes. It is about the complete dependency of a right hand side attribute on
one of the left hand side attributes. In a functional dependency XY =7Z, if Z (RHS
attribute) can be uniquely identified by one of the LHS attnbutes then the
functional dependency is partial dependency.

Example:

Let us assume a relation R with attributes A, B, C, and D. Also, assume that the
set of functional dependencies F that hold on R as follows;

F={A->B,D~-> C} '

From set of attributes F, we can derive the primary key. For R, the key can be
(A,D), a composite primary key. That means, AD - BC, AD can uniquely identify
B and C. But, for this case A and D is not required to identify B or C uniquely. To
identify B, attribute A is enough. Likewise, to identify C, attribute D is enough.
The functional dependencies AD - B-or AD - C are called as Partial functional
dependencies.




Data Dependency/Functional Dependency

Transitive Dependency: The functional dependency follows the mathematical
property of transitivity, which states that if A=B and B=C, then A=C. Because
ltemNo. determines CategorylD, which in turn determines CategoryName and
CategoryManager, the relation contains a transitive dependency.

ItemNo — Title, Price, CategoryID
Categoryld — CategoryName, CategoryManager

Transitive dependencies occur when there is an indirect relationship that causes
a functional dependency.

Examples: For example, "A -> C” is a transitive dependency when it is true only
because both “A ->B” and “B -> C” are true.



Data Dependency/Functional Dependency

Trivial and Non-trivial Dependency:
Trivial: If an FD X = Y holds where Y subset of X, then it is called a trivial FD.
Trivial FDs are always hold.
Symbolically: A = B is trivial functlonal dependency |f B is a subset of A.
The following dependencies are also tr|V|aI
| A->A
AB > A
AB - B
B->B

For example:
Consider a table with two columns Student id and Student Name.

{Student_Id, Student_Name} - Student_Id
is a trivial functional dependency as Student Id is a subset of -{Student_lId,
Student_Name}. That makes sense because if we know the values of Student_Id
and Student_Name then the value of Student_ld can be uniquely determined.
Also,
Student_ld->Student_Id
Student_Name->Student_Name
are trivial dependencies too.



Data Dependency/Functional Dependency

Trivial and Non-trivial Dependency:

Non-trivial: If an FD X = Y holds where Y is not subset of X, then it is called non-
trivial FD.

For example:

An employee table with three attributes:

emp_id, emp_name, emp_address.

The following functional dependencies are non-trivial:

emp_id=> emp_name (emp_name is not a subset of emp _id)
emp_id = emp_address (emp_address is not a subset of emp id)

On the other hand, the following dependencies are trivial:

emp_id, emp_name - emp_name
emp_name is a subset of {emp_id, emp _name}

Completely non-trivial: If an FD X = Y holds where X intersect Y = @, is said to be
completely non-trivial FD. | | |



Data Dependency/Functional Dependency
Conclusion of Functional Dependency | -

Functional Dependencies:
= Data dependencies are constraints imposed on data in database.
= They are part of the scheme definition.
=  FDs allow us to formally define keys.
= A conjecture (It has to be proven) is that a set of functional dependencies
and one join dependency are enough to express the dependency structure
of a relational database scheme.

Motivation:

Functional dependencies help in accomplishing the following two goals:
(a) controlling redundancy and
(b) enhancing data reliability.



Data Dependency/Functional Dependency

Problematic Issue:
Representing the set of all FDs for a relation R.

Solution:

"  Find a basic set of FDs.

= Use axioms for inferring.

= Represent the set of all FDs as the set of FDs that can be inferred from the basic
set of FDs.

Axioms:
An inference axiom is a rule that states if a relation satisfies certain FDs then it must
satisfy certain other FDs.



Data Dependency/Functional Dependency

Armstrong’s axioms are a set of axioms (or, more precisely, inference rules) used to
infer all the functional dependencies on a relational database. They were developed
by William W. Armstrong.

FD manipulations:
Soundness -- no incorrect FD's are generated
Completeness -- all FD's can be generated

Let R(U) be a relation scheme over the set of attributes U. We will use the letters X, Y,
Z & W to represent any subset of and, for short, the union of two sets of attributes
and by instead of the usual X U Y.

F1. Reflexivity/Self Determination X = X

F2. Augmentation If ZcW; X = Y)thenXW - YZ, If A—> Bthen AC - BC
F3. Additivity/Union If { (X > Y) (X = Z)}then X = YZ

F4. Projectivity/Decomposition If (X = YZ)thenX = Y, X>Z

F5. Transitivity If (X = Y)and (Y = Z) then (X = 2)

F6. Pseudotransitivity If (X = Y)and (YZ - W)thenXZ > W



Data 'D'ependeric'y/ Functional Dependency |

Axiom Name

Reflexivity

Axiom

if a is set of attributes, b € a, then a -b

Example
SSN,Name - SSN

Augmentation

if a= b holds and c is a set of attributes,
then ca—>cb

SSN = Name then

SSN,Phone - Name, Phone

Transitivity if a >b holds and b—>c holds, thena—> ¢ SSN —Zip and Zip—>City

holds then SSN —>City
Union or Additivity * ifa - b and a - c holds then a=> bc SSN->Name and

holds SSN—>Zip

then SSN->Name,Zip
Decomposition or ifa > bc holdsthena—>banda—>c SSN->Name,Zip
Projectivity™ holds then SSN->Name
and SSN->Zip

Pseudotransitivity*

ifa—> bandcb > dholdthenac—>d
holds

Address = Project and
Date->Amount  then
Address,Date - Amount

(NOTE)

ab—> cdoes NOT implya > bandb > c¢




Data Dependency/ Functional Dependency

Prove or d|sprove the following mference rules for functional dependencies-

. (WY, X->Z} = {WX->Y}
i. X=>YtandY>Z = {X->Z}
iii. {X2>VY,Y>Z} = {(X>YZ}
iv. {X->27Y->7} = DY}

v. {XY>Z,Z-5>W} = {X>Wj}

. (WY, X->Z} = {WX->Y}
Given
W Y - (a)
X272 ----—---- (b)
by augmenting in (a) by X
WX - XY ------- (c)

by decomposing in (c)
WX = Y Hence, it is proved.



Data Dependency/Functional Dependency

Prove or disprove the following inference rules for functional dependencies-
i. {X-=>YiandYZ = {X>Z}
Given
XY - (a)
Y © Z and that two tuples t1 and t2 exist in some relation instance r of R such
that t1[Y] = t2[Y]. Then t1[Z] = t2[Z] because Y > Z ; hence Y -Z must hold.

by transitivity X - Y and Y -Z then X -Z. Hence, it is proved.

ii. {X=2>VYY->Z} = {X > YZ}
Given
XY - (a)
Y >Z ---—---- (b)
by augmentation rule on (b) by Y
Y 2>YZ ---—---- (c)

and by transitivity rule on (a) and (c)
X=>YandY->YZ = {X->YZ}
Hence, it is proved.



Data Dependency/Functional Dependency

Prove or disprove the following inference rules for functional dependencies-
iv. {X>2ZY->Z} = {X Y}

Given X = Z i.e. X ©Z and that any two tuples t1 and t2 of relation R such that
t1[X] = t2[X] then t1[Z] = t2[Z].

Also given Y - Zi.e. Y ©Z and that any two tuples t1 and t2 of relation R such
that t1[Y] = t2[Y] then t1[Z] = t2[Z].
This implies that X 2 Y; i.e. X =Y. Hence, it is proved.

iv. {XY=>7,Z->W} = {X>W}
Given

LW - (b)
by transitivity rule on (a) and (c)

XY >ZandZ>W = {XY > W} - (c)
by decomposition rule on (c)

X>WY->W
Hence, it is proved.



Data Dependency/Functional Dependency

Closure of Functional Dependencies

Suppose F is a Set of functional dependencies for a given relation R. Then,

Closure of F:

It is a set of all functional dependencies that include F as well as all dependencies
that are inferred from F. It is denoted by

F+

X = Y is inferred from F specified in Rif X > Y holds in every legal relation state r of

R.
By applying the following 6 inference rules, we can inferred FDs of F.

Reflexivity X = X

Augmentation If (Zc W; X = Y) then XW - YZ

Additivity If { (X 2 Y) (X = Z)}then X = YZ

Projectivity If (X &> YZ)thenX = Y

Transitivity If (X = Y)and (Y = Z) then (X = 2Z)
Pseudotransitivity If (X = Y)and (YZ - W)thenXZ > W

SR O Sl



Data Dependency/Functional Dependency

Example for Closure of F:

Suppose we are given a relatlon scheme R= (A B,C,G,H,l), and the set of functlonal
dependencies:

A—->B
A->C
CG—>H
CG—> |
B —>H
Applying the rules to the scheme and set F mentioned above, we can derive the
following:
1. A - H,aswe saw by the transitivity ruIe
2. CG - HI by the union rule.
3. AG - /by several steps:
i.  Note that A - C holds.
ii. ThenAG - CG, by the augmentation rule.
iii. Now by transitivity, AG - /.
(You might notice that this is actually pseudotransivity if done in one step.)



Data Dependency/Functional Dependency

Example fof Closure of F:
Assume that there are 4 attributes A, B, C, D, and that F={A - B, B —> C}. Then, F +

includes all the following:

FDs:A->A,A>B,A>CB->BB>CC->CD->D,AB->A AB->B,AB - C,AC
> A, AC - B,AC-> C,AD - A, AD - B, AD - C, AD > D, BC > B, BC > C, BD - B,
BD - C, BD > D, CD - C, CD > D, ABC - A, ABC - B, ABC > C, ABD - A, ABD - B,
ABD - C, ABD -> D, BCD - B, BCD > C, BCD - D, ABCD -> A, ABCD - B, ABCD - C,
ABCD - D.



Data Dependency/Functional Dependency

Example for Closure of F:
Assume that there are 4 attributes A, B, C, D, and that F = {A - B, B - C}.
To compute F+,
we first get:

A+ = AB+ = AC+ = ABC+ = {A, B, C}

B+=BC+={B,C} '

C+ ={C}

D+ = {D}

AD+ = {A, D}

BC+ = {B, C}

BD+ = BCD+ = {B, C, D}

ABD+ = ABCD+ = {A, B, C, D}

ACD+={A, C, D} _ _ _
It is easy to generate the FDs in F + from the closures of the above attribute sets.




Data Dependency/Functional Dependency

Closure of Attribute
Define the closure of a under F (denoted by a+) as the set of attrlbutes that are
functionally determined by a under F:
a—>BisinF+ © B C a+t
e Algorithm to compute a+, the closure of a under F

result := a;
while (changes to result) do
foreachf > yinFdo

begin
if B € result then result := result Uy;
end
Example
=(A,B,C,G,H,I)and F = {A%BA%CCG%HCG%IB%H}
. (AG+) _
1. result = AG

2. result = ABCG (A - Cand A € AGB)
3. result = ABCGH (CG = H and CG € AGBC)
4. result = ABCGHI (CG - | and CG € AGBCH)



Data Dependency/Functional Dependency

Finding Candidate Key
Let F be a set of FDs, and R a relation.

A candidate key is a set X of attributes in R such that
e X+includes all the attributes in R.
e Thereis no proper subset Y of X such that Y + includes all the attributes in R.

Note: A proper subset Y is a subset of X such that Y != X (i.e., X has at least one
element notinY ).

Example.
Consider a table R(A, B, C, D), and that F ={A - B, B - C}.

A is not a candidate key, because A + = {A, B, C} which does not include D.

ABD is not a candidate key even though ABD+ = {A, B, C, D}.

This is because AD+ = {A, B, C, D}, namely, there is a proper subset AD of ABD such
that AD+ includes all the attributes. AD is a candidate key.



Data Dependency/Functional Dependency

Finding Candidate Key

Example.

Consider a tableR(A, B, C, D, E, F),andthat F={A—> C,C—> D,D > B, E = F}.
Find all the possible candidate key.

Given A - C, Adetermines C

C-> D, Cdetermines D

D - B, D determines B

E—> F E determinesF
Now, the easiest way is to find which attributes are not determined. In this example,
A and E are not determined. Then, find out the closure of (AE)+.

(AE)+ = AE

= ACE

= ACDE

= ACDBE

= ACDBEF
Closure of AE has all the attributes. Thus, AE is a candidate key. In this way, we can
find out more candidate keys for this problem.



Normalization

While designing a database out of an entity—relationship model, the main problem
existing in that “raw” database is redundancy. Redundancy is storing the same data
item in more one place. A redundancy creates several problems like the following:

Extra storage space: storing the same data in many places takes large amount
of disk space.

Entering same data more than once during data insertion.

Deleting data from more than one place during deletion.

Modifying data in more than one place.

Anomalies may occur in the database if insertion, deletion, modification etc
are no done properly. It creates inconsistency and unreliability in the

database.

To solve this problem, the “raw” database needs to be normalized. This is a step by
step process of removing different kinds of redundancy and anomaly at each step. At
each step a specific rule is followed to remove specific kind of impurity in order to
give the database a slim and clean look.



Normalization
Normalization of Database

Database Normalization is a technique of organizing the data in the database.
Normalization is a systematic approach of decomposing tables to eliminate data
redundancy and undesirable characteristics like Insertion, Update and Deletion
Anomalies. It is a multi-step process that puts data into tabular form by removing

duplicated data from the relation tables.

Normalization is the process of organizing data in a database to reduce redundancy
and improve data integrity. It involves decomposing large tables into smaller ones and

establishing relationships between them to ensure efficient data management.



Normalization

Why Normalization of Database?

1.

Eliminates Data Redundancy
 Reduces duplicate data, saving storage space.
 Ensures consistency, as data is stored only in one place.

Improves Data Integrity and Consistency
 Avoids anomalies (insertion, update, and deletion anomalies).

* Ensures that any change in data reflects across related tables correctly.

Enhances Data Retrieval Efficiency
* Structured tables improve query performance.
* |Indexing becomes more efficient.

Reduces Anomalies in Database Operations

* Insertion Anomaly: Prevents unnecessary storage of null values.
« Update Anomaly: Ensures that updates occur at a single place.
e Deletion Anomaly: Avoids unintentional data loss due to deletion.

Maintains Data Dependencies
 Ensures that attributes are logically related.
 Helps in enforcing referential integrity.



Normalization

Un-Normalized Form (UNF)

If a table contains non-atomic values at each row, it is said to be in UNF. An atomic
value is something that can not be further decomposed. A non-atomic value, as the
name suggests, can be further decomposed and simplified. Consider the following
table:

Emp-ld [Emp-Name| Month Sales Bank-ld |Bank-Name
EO1 AA Jan 1000 BO1 SBI
Feb 1200
Mar 850
EO02 BB Jan 2200 BO2 UTI
Feb 2500
EO3 CC Jan 1700 BO1 SBI
Feb 1800
Mar 1850
Apr 1725

In the sample table above, there are multiple occurrences of rows under each key
Emp-Id. Although considered to be the primary key, Emp-ld cannot give us the
unique identification facility for any single row. Further, each primary key points to a
variable length record (3 for EO1, 2 for EO2 and 4 for E03).



Normalization

Problems without Normalization

If a database design is not perfect, it may contain anomalies, which are like a bad
dream for any database administrator. Managing a database with anomalies is next
to impossible.

Update anomalies - If data items are scattered and are not linked to each other
properly, then it could lead to strange situations. For example, when we try to update
one data item having its copies scattered over several places, a few instances get
updated properly while a few others are left with old values. Such instances leave the
database in an inconsistent state.

Deletion anomalies — We tried to delete a record, but parts of it was left undeleted
because of unawareness, the data is also saved somewhere else.

Insert anomalies — We tried to insert data in a record that does not exist at all.
Normalization is a method to remove all these anomalies and bring the database to a
consistent state.



Normalization

Normalization Forms

Normalization is performed in stages known as Normal Forms (NF):

= First Normal Form (1NF) — Eliminates duplicate columns, ensures atomicity.

= Second Normal Form (2NF) — Removes partial dependencies.

= Third Normal Form (3NF) — Eliminates transitive dependencies.

= Boyce-Codd Normal Form (BCNF) — Strengthens 3NF to handle special cases.

= Fourth (4NF) and Fifth Normal Form (5NF) — Deals with multi-valued
dependencies and complex relationships.

First Normal Form (1NF)
A relation is in first normal form if it meets the definition of a relation:
=  Each attribute (column) value must be a single value only.
= All values for a given attribute (column ) must be of the same type.
=  Each attribute (column) name must be unique.
= The order of attributes (columns) is insignificant
= No two tuples (rows) in a relation can be identical.
= The order of the tuples (rows) is insignificant.
If you have a key defined for the relation, then you can meet the unique
row requirement.



Normalization

First Normal Form (1NF)

A relation is said to be in 1NF if it contains no non-atomic values and each row can
provide a unique combination of values. The above table in UNF can be processed to
create the following table in 1NF.

Emp-ld| Emp-Name [Month|Sales|Bank-Id|Bank-Name
EO1 AA Jan |[1000| BO1 SBI
EO1 AA Feb (1200| BO1 SBI
EO1 AA Mar | 850 | BO1 SBI
EO2 BB Jan |2200| BO2 UTI
EO2 BB Feb (2500 BO02 UTI
EO3 CC Jan (1700 BO1 SBI
EO3 CC Feb (1800| BO1 SBI
EO3 CC Mar [1850| BO1 SBI
EO3 CC Apr |1725| BO1 SBI

As you can see now, each row contains unigue combination of values. Unlike in UNF,
this relation contains only atomic values, i.e. the rows can not be further
decomposed, so the relation is now in 1NF.



Un-Normal Form
Table

Table in First
Normal Form

Normalization

Company |Symbol |Headquarters Date Close Price
Microsoft | MSFT | Redmond, WA 09/07/2013 | 23.96
09/08/2013 | 23.93
09/09/2013 | 24.01
Oracle ORCL | Redwood Shores, CA | 09/07/2013 | 24.27
09/08/2013 | 24.14
09/09/2013 | 24.33

Company |Symbol |Headquarters Date Close Price
Microsoft | MSFT | Redmond, WA 09/07/2013 | 23.96
Microsoft | MSFT | Redmond, WA 09/08/2013 | 23.93
Microsoft | MSFT | Redmond, WA 09/09/2013 | 24.01
Oracle ORCL | Redwood Shores, CA | 09/07/2013 | 24.27
Oracle ORCL | Redwood Shores, CA | 09/08/2013 | 24.14
Oracle ORCL | Redwood Shores, CA | 09/09/2013 | 24.33




Nn Can de remaoved INto anotner reliatea reiation, It would come o 2INF.

Normalization

Second Normal Form (2NF)

A relation is said to be in 2NF f if it is already in 1NF and each and every attribute
fully depends on the primary key of the relation. Speaking inversely, if a table has
some attributes which is not dependant on the primary key of that table, then it is
not in 2NF.
Let us explain. Emp-Id is the primary key of the above relation. Emp-Name, Month,
Sales and Bank-Name all depend upon Emp-Id. But the attribute Bank-Name depends
on Bank-Id, which is not the primary key of the table. So the table is in 1NF, but not in
2NF. If this position can be removed into another related relation, it would come to

2NF.
Emp-Id[Emp-Name|Month|Sales|Bank-id
EO1 AA JAN |1000{ BO1
EO1 AA FEB |1200{ BO1
EO1 AA MAR | 850 | BO1
EO2 BB JAN |2200| BO2
EO2 BB FEB |2500| BO2
EO3 CC JAN |1700| BO1
EO3 CC FEB |[1800| BO1
EO3 CC MAR.|{1850| BO1
EO3 CC APR [1726| BO1

Bank-Ild|Bank-Name
BO1 SBI
B0O2 UTI

After removing the portion into another
relation we store lesser amount of data in
two relations without any loss
information. There is also a significant
reduction in redundancy.



Normalization

The following example relation is not in 2NF:
STOCKS (Company, Symbol, Headquarters, Date, Close_Price)

To start the normalization process, list the functional dependencies (FD):
FD1: Symbol, Date - Company, Headquarters, Close Price
FD2: Symbol > Company, Headquarters

Consider that Symbol, Date - Close Price. So we might use Symbol, Date as our key.
However we also see that: Symbol - Headquarters
= This violates the rule for 2NF in that a part of our key. key determines a non-
key attribute.
=  Another name for this is a Partial key dependency Symbol is onIy a “part” of
the key and it determines a non-key attribute.
= Also, consider the insertion and deletion anomalies.

One Solution:

Split this up into two new relations:
COMPANY (Company, Symbol, Headquarters)
STOCK_PRICES (Symbol, Date, Close_Price):




Normalization

At this point we have [Company |Symbol [Headquarters Date Close Price
two new relations in our | \crosoft | MSFT | Redmond, WA 09/07/2013 | 23.96
relational model. The [
i y ,, | Microsoft | MSFT | Redmond, WA 09/08/2013 | 23.93
original STOCKS
Microsoft | MSFT | Redmond, WA 09/09/2013 | 24.01

relation we started with
is removed form the | Oracle ORCL | Redwood Shores, CA | 09/07/2013 | 24.27

model. Oracle | ORCL | Redwood Shores, CA | 09/08/2013 | 24.14
Sample. data and
functional dependencies
for ~the two new gp;. Symbol, Date & Company, Headquarters, Close Price
relations: ; ; i i
COMPANY Relation: Symbol |Date Close Price
MSFT | 09/07/2013 | 23.96

MSFT | 09/08/2013 | 23.93

Oracle ORCL | Redwood Shores, CA | 09/09/2013 | 24.33

FD2: Symbol > Company, Headquarters

Company [Symbol [Headquarters MSFT | 09/09/2013 | 24.01
Microsoft | MSFT | Redmond, WA ' ORCL | 09/07/2013 | 24.27
Oracle ORCL | Redwood Shores, CA ORCL | 09/08/2013 | 24.14

ORCL | 09/09/2013 | 24.33




Nn Can de remaoved INto anotner reliatea reiation, It would come o 2INF.

Normalization

Third Normal Form (3NF)

A relation is in third normal form (3NF) if it is in second normal form and it contains
no transitive dependencies.

Consider relation R containing attributes A, B and C. R(A, B, C)
IfA—>BandB > CthenA—>C

Transitive Dependency: Three attributes with the above dependencies.

Example: At CUNY:

Course_Code - Course_Number, Section
Course_Number, Section - Classroom, Professor

Consider one of the new relations we created in the STOCKS example for 2nd normal
form:

The functional dependencies we can see are:
FD1: Symbol - Company

FD2: Company - Headquarters Company (Symbol |Headquarters
so therefore: Symbol - Headquarters Microsoft | MSFT | Redmond, WA

This is a transitive dependency.
What happens if we remove Oracle?
We loose information about 2 different facts.

Oracle ORCL | Redwood Shores, CA



http://holowczak.com/database-normalization/3/

Normalization

The solution again is to split this relation up into two new relations:
STOCK_SYMBOLS(Company, Symbol)
COMPANY_HEADQUARTERS(Company, Headquarters)

This gives us the following sample data and FD for the new relations

FD1: Symbol - Company FD2: Company - Headquarters
Company |Symbol Company |Headquarters
Microsoft | MSFT Microsoft | Redmond, WA
Oracle ORCL Oracle Redwood Shores, CA




Normalization

Boyce-Codd Normal Form (BCNF)

= Avrelation is in BCNF if every determinant is a candidate key.

=  Recall that not all determinants are keys.

= Those determinants that are keys we initially call candidate keys.
=  Eventually, we select a single candidate key to be the key for the relation.

=  Consider the following example:

» Funds consist of one or more Investment Types.

Funds are managed by one or more Managers

>
» Investment Types can have one more Managers
» Managers only manage one type of investment.

Relation: FUNDS (FundID, InvestmentType, Manager)

FD1: FundID, InvestmentType - Manager
FD2: FundID, Manager - InvestmentType
FD3: Manager - InvestmentType

FundID| InvestmentType |Manager
99 Common Stock | Smith
99 | Municipal Bonds| Jones
33 Common Stock | Green
22 Growth Stocks | Brown
11 Common Stock | Smith




Normalization

In this case, the combination FundID and InvestmentType form a candidate

key because we can use FundID,InvestmentType to uniquely identify a tuple in

the relation.

Similarly, the combination FundID and Manager also form a candidate

key because we can use FundID, Manager to uniquely identify a tuple.

Manager by itself is not a candidate key because we cannot use Manager alone

to uniquely identify a tuple in the relation.

Is this relation FUNDS(FundID, InvestmentType, Manager) in 1NF, 2NF or 3NF ?

Given we pick FundID, InvestmentType as the Primary Key:

v" 1INF for sure.

v" 2NF because all of the non-key attributes (Manager) is dependant on all of
the key.

v" 3NF because there are no transitive dependencies.

However consider what happens if we delete the tuple with FundID 22. We loose
the fact that Brown manages the InvestmentType “Growth Stocks.”



Normalization

=  Therefore, while FUNDS relation is in INF, 2NF and 3NF, it is in BCNF because not
all determinants (Manager in FD3) are candidate keys.
= The following are steps to normalize a relation into BCNF:
v List all of the determinants.
v'  See if each determinant can act as a key (candidate keys).
v' For any determinant that is not a candidate key, create a new relation from
the functional dependency. Retain the determinant in the original relation.
=  For our.example:FUNDS (FundID, InvestmentType, Manager)
=  The determinants are:FundID, InvestmentType FundID, Manager Manager
=  Which determinants can act as keys?
FundID, InvestmentType YES
FundID, Manager YES
Manager NO
= Create a new relation from the functional dependency:

MANAGERS(Manager, InvestmentType),
FUND_MANAGERS(FundID, Manager)

In this last step, we have retained the determinant “Manager” in the original relation
MANAGERS.Each of the new relations should be checked to ensure they meet the
definitions of INF, 2NF, 3NF and BCNF




Normalization

=  For our example:FUNDS (FundID, InvestmentType, Manager)
= The determinants are:FundID, InvestmentType FundID, Manager Manager
=  Which determinants can act as keys?
FundID, InvestmentType YES
FundID, Manager YES
Manager NO
= Create a new relation from the functional dependency:

MANAGERS(Manager, InvestmentType),
FUND_MANAGERS(FundID, Manager)

In this last step, we have retained the determinant “Manager” in the original relation
MANAGERS. Each of the new relations should be checked to ensure they meet the
definitions of 1NF, 2NF, 3NF and BCNF

FundID|Manager InvestmentType |Manager
99 Smith Common Stock | Smith
99 Jones Municipal Bonds| Jones
33 Green Common Stock | Green
22 Brown Growth Stocks | Brown
11 Smith Common Stock | Smith




Normalization

Fourth Normal Form (4NF)

A relation is in fourth normal form if it is in BCNF and it contains no multivalued
dependencies.

Multivalued Dependency: A type of functional dependency where the determinant
can determine more than one value.
More formally, there are 3 criteria:

= There must be at least 3 attributes in the relation. call them A, B, and C, for

example.

=  Given A, one can determine multiple values of B.

= Given A, one can determine multiple values of C.

= BandCareindependent of one another.


http://holowczak.com/database-normalization/4/

Normalization

Example (Before 4NF - Table with Multi-Valued Dependency)
Consider a STUDENT_SKILLS_PROIJECTS table where a student can have multiple
skills and work on multiple projects:

Student_ID Skill Project
101 Python Al Model
101 Java Al Model
101 Python Web App
101 Java Web App
102 C++ loT System
102 C loT System

Problem: Multi-Valued Dependency (MVD)

A student’s skills are independent of the projects they work on.

(Student_ID -> - Skill) and (Student_ID - - Project) are two independent
multi-valued dependencies.

This causes redundancy because every combination is stored multiple times.



Normalization

Example (After Applying 4NF - Removing Multi-Valued Dependency)
We split the table into two:

Table 1: STUDENT_SKILLS Table (Stores student skills)

Student_ID Skill
101 Python
101 Java
102 C++
102 C

Table 2: STUDENT_PROJECTS Table (Stores student projects)

Student_ID Project
101 Al Model
101 Web App
102 loT System

= Eliminates multi-valued dependencies by separating independent data.
» Reduces redundancy and anomalies in data storage.
» Ensures that attributes depend only on the primary key.



Normalization

A few characteristics:

=  Noregular functional dependencies

= All three attributes taken together form the key.

= Later two attributes are independent of one another.

= |nsertion anomaly: Cannot add a stock fund without adding a bond fund (NULL
Value). Must always maintain the combinations to preserve the meaning.

Stock Fund and Bond Fund form a multivalued dependency on Portfolio ID.
PortfoliolD - -> Stock Fund
PortfoliolD ->-> Bond Fund

Portfolio ID {Stock Fund Bond Fund

999 Janus Fund Municipal Bonds

999 Janus Fund Dreyfus Short-Intermediate Municipal Bond Fund
999 Scudder Global Fund | Municipal Bonds

999 Scudder Global Fund | Dreyfus Short-Intermediate Municipal Bond Fund
888 Kaufmann Fund T. Rowe Price Emerging Markets Bond Fund




Normalization

Resolution: Split into two tables with the common key:

Portfolio ID [Stock Fund

999 Janus Fund

999 Scudder Global Fund
888 Kaufmann Fund

Portfolio ID |Bond Fund

999 Municipal Bonds

999 Dreyfus Short-Intermediate Municipal Bond Fund

888 T. Rowe Price Emerging Markets Bond Fund




Normalization

Fifth Normal Form (5NF)
= Also called “Projection Join” Normal form.

A table is in Fifth Normal Form (5NF) if:

= J|tis already in Fourth Normal Form (4NF).

= |t does not have join dependencies that lead to lossless decomposition (i.e., a
table should not be broken into smaller tables unless it ensures correct data
reconstruction when joined back).

** 5NF focuses on eliminating redundancy caused by complex relationships
between multiple entities.



Normalization

Example (Before 5NF - Table with Join Dependency)
Consider a STUDENT_COURSE_PROFESSOR table where:
= A student can enroll in multiple courses.

= A professor can teach multiple courses.

= A student can learn from multiple professors.

Student_ID | Course_ID | Professor_ID
101 COo1 PO1
101 C02 P02
102 Co1 PO1
102 Cc0o3 PO3

Issue (Join Dependency):

= This table is not in 5NF because there is a many-to-many relationship between
Students, Courses, and Professors.

= |f a professor no longer teaches a course, deleting a row might remove information
about the student’s enrollment, leading to data loss.



Normalization

Example (After Applying 5NF - Removing Join Dependency)
We decompose the table into three smaller tables:

STUDENT_COURSE Table COURSE_PROFESSOR Table = STUDENT_PROFESSOR Table

Course_ID | Professor_ID Student_ID | Course_ID Student_ID | Professor_ID
COo1 PO1 101 Co1 101 PO1
C02 P02 101 C02 101 P02
C03 PO3 102 Co1 102 PO1
102 C03 102 PO3

» Eliminates redundancy by Dbreaking down complex many-to-many
relationships.

» Ensures lossless join decomposition (We can reconstruct the original table by
joining these tables).

= Avoids unnecessary duplication of data.



Normalization

What is Lossless Decomposition?

Lossless decomposition ensures that when a table is split into smaller tables, no
data is lost, and we can reconstruct the original table by joining the decomposed
tables.

A decomposition is lossless if the natural join of the decomposed tables results in
the original table without any extra or missing tuples.

To verify that this decomposition is lossless, we join the decomposed tables:
Performing Natural Joins
= Join STUDENT_COURSE and COURSE_PROFESSOR on Course_|ID:
= This gives us a table with (Student ID, Course_ID, Professor ID), but it
might have extra rows.
= Join the result with STUDENT_PROFESSOR on (Student_ID, Professor_ID).

If we get back the original STUDENT_COURSE_PROFESSOR table exactly as it was,
the decomposition is lossless.

Since our decomposition maintains all relationships and allows perfect
reconstruction of the original table, this decomposition is lossless.



Minimal/Canonical Cover (Fc) of FDs

Minimal Cover/Canonical Cover (also called Minimal Basis) of a set of functional
dependencies (FDs) is an equivalent set of FDs that is:

=  Minimal - It has the smallest number of FDs.

= Canonical — The right-hand side of each FD contains only one attribute.

* Irredundant — No FD is unnecessary (i.e., no FD can be derived from others).

Steps to Find Minimal Cover

To find the minimal cover for a set of functional dependencies, follow these steps:

= Make RHS Atomic — Ensure that each FD has a single attribute on the right-hand
side.

= Remove Extraneous Attributes — Eliminate unnecessary attributes from the left-
hand side.

= Remove Redundant FDs — Delete redundant functional dependencies.



Minimal/Canonical Cover (Fc) of FDs
Example1l | | | |

Consider a relation R(A, B, C, D) with the following functional dependencies:
F={A->B(C,B->C,A->B,AB->C(}

Step 1: Make RHS Atomic
Each FD should have only one attribute on the right-hand side.
A = BC can be split into:
A—->B
A->C
Now, our set becomes:
F={A->B,A->C,B->C,A->B,AB->C(}

(Remove duplicate A > B)F={A->B,A->C,B—>C,AB->C}



Minimal/Canonical Cover (Fc) of FDs

Step 2: Remove Extraneous Attributes
A left-side attribute is extraneous if removing it does not change the closure of the
set.
Check if AB = C can be simplified:
Compute A+ (closure of A):
A - B (so, A+ ={A, B})
B> C(so, A+={A, B, C})
Since A+ already contains C, AB - Cis redundant.

Remove AB - C, leaving:F={A->B,A->C,B->(}

Step 3: Remove Redundant FDs
An FD X = Y is redundant if Y can be derived from other FDs.
Check if A = Cis redundant:
Compute A+ using A > Band B - C:
A - B (so, A+ ={A, B})
B> C(so, A+={A, B, C})
Since Cis already in A+, A = Cis redundant.
Remove A - C, leaving:
F...={A—->B,B—>C}



Minimal/Canonical Cover (Fc) of FDs

Example 2
Consider a relation R(X, Y, Z, W, V) with the following functional dependencies:
F={XZ->YW, Y= W, XY, XW->V}

Find the Minimal Cover F_ by following these steps:

1. Make RHS atomic (Each FD should have only one attribute on the right-hand
side).

2. Remove extraneous attributes from LHS.

3. Remove redundant FDs to get the minimal cover.

Step 1: Make RHS Atomic
Each FD should have only one attribute on the right-hand side.
XZ - YW can be split into:
XZ->Y
XZ->W
Now, the new set of F is:
F={XZ->Y, XZ5W, YW, XY, X\W->V}

Now, all FDs have atomic RHS.



Minimal/Canonical Cover (Fc) of FDs

Step 2: Remove Extraneous Attributes from LHS
Now, check if any attribute in LHS is unnecessary.
Check if Z is extraneous in XZ > Y:
Compute X* (closure of X) using remaining FDs:
X =Y (Given)
Y 2> W (Given)
X*={X,Y, W}
Since X alone can determine Y, XZ = Y can be reducedto X = Y.
Updated FDs after removal:
F={X-2>Y, XZ->W, Y>> W, XW->V}

Check if Z is extraneous in XZ - W:
Compute X*:
X=>Y
YoW
X*={X,Y, W}
Since X alone can determine W, XZ - W is redundant and can be removed.
Updated FDs after removal:
F={X-2>YY>WXW->V}

Now, no extraneous attributes in LHS.



Minimal/Canonical Cover (Fc) of FDs

Step 3: Remove Redundant FDs

Check if X = Y is redundant:
We need Y to determine W, so X = Y is required.
Not redundant.

Check if Y > W is redundant:
If we remove Y = W, then we can't derive W from X.
Not redundant.

Check if XW = V is redundant:
If we remove XW = V, then V cannot be derived.
Not redundant.

No redundant FDs left.

Final Minimal Cover F

min

={X=2Y, YW, X\W->V}

I:min



Dangling Tuple

A dangling tuple in DBMS refers to a tuple (row) in a database that does not have a

valid reference in another related table due to referential integrity violations. This

typically happens in foreign key constraints, where a foreign key in one table refers to

a primary key in another table, but the referenced primary key does not exist.

Causes of Dangling Tuples:

= Deletion of a Referenced Tuple — If a referenced row (primary key) in the parent
table is deleted, but the foreign key in the child table still refers to it.

= |nsertion of an Invalid Foreign Key — If a tuple with a foreign key is inserted into a
table, but the referenced primary key does not exist in the parent table.

= Update Anomalies — If the value of the referenced primary key is updated,

making existing foreign key references invalid.



Dangling Tuple

Example:
Parent Table (Department)

Dept_ID (Primary Key) | Dept_Name
101 CSE
102 ECE

Child Table (Student)

Student_ID | Name | Dept_ID (Foreign Key)
1 Alex 101
2 Bob 103

In the above example, the Student table has a dangling tuple because Dept_ID = 103
does not exist in the Department table.



Dangling Tuple

Causes of Dangling Tuples

1.

Deletion of the referenced row in the parent table (DELETE FROM Departments
WHERE Dept_ID = 101;).

Insertion of an invalid foreign key in the child table (INSERT INTO Students
VALUES (3, 'Charlie’, 104); where 104 does not exist).

Updating the primary key in the parent table, making foreign key references
invalid.

Prevention Methods:

1.

ON DELETE CASCADE - Automatically deletes dependent rows when the
referenced row is deleted.

ON DELETE SET NULL — Sets foreign key values to NULL if the referenced row is
deleted.

Foreign Key Constraints — Ensure referential integrity by preventing invalid
insertions.

Triggers — Custom database triggers can be used to handle integrity checks.



Canonical Cover (Fc) of FDs

Consider two sets of FDs

F={A>B, AB >C, D>AC, D>E}

G={ A>BC, D>AB}

Which one is true?

a) FcoversG

b) G coversF

c) F&Gareequal

d) None

Let us consider first set of FDs F = { A>B, AB >C, D>AC, D>E}

1. Here given D->AC apply decompose rule D>A, D>C

2. After this FDs are F={A—->B, AB >C, D>A, D>C, D> E}
Only one FD is a partial FD AB = C where B is extraneous. Because, A+ = AB & B+
= B.



Canonical Cover (Fc) of FDs
Now find out redundant FDs

F={A>B,A>C, D>A, D>C, D>E}

redundant FD can be find out by finding closure of each attribute set of FD,
without any help of that FD.

for example:

A->B For this FD calculate A+ and try to derive B from A without help of A>B
is it possible? No, then it is non-redundant.

A+ =AC

A—>C For this FD calculate A+ and try to derive C from A without help of A>C s
it possible? No, then it is non-redundant.

A+ =AB

D—>A For this FD calculate D+ and try to derive A from D without help of D2>A
is it possible? No, then it is non-redundant.

D+ = DCE

D—>C For this FD calculate D+ and try to derive C from D without help of D>C
is it possible? Yes, then it is redundant.

D+ = DAEBC

D—>E For this FD calculate D+ and try to derive E from D without help of D> E
is it possible? No, then it is non-redundant.

D+ = DACB



Canonical Cover (Fc) of FDs

Hence Fc for given FD set F={ A>B, A 2>C, D2>A, D>C, D> E}is
Fc={A>B, A >C, DDA, D>E}
Similarly, we’ll consider G = { A>BC, D>AB}

1.
2.

Here given A>BC, D> AB apply decompose rule A>B, A >C, D2>A, D>B
After this FDs are G = {A>B, A >C, D2>A, D>B}

Here, No FD has extraneous attribute. Follow third step

Now find out redundant FDs

G={A>B,A>C,D>A, D>B}

A—>B For this FD calculate A+ and try to derive B from A without help of A>B
is it possible? No, then it is non-redundant.

A+ =AC

A—>C For this FD calculate A+ and try to derive C from A without help of A>Cis
it possible? No, then it is non-redundant.

A+ =AB

D—2>A For this FD calculate D+ and try to derive A from D without help of D2>A
is it possible? No, then it is non-redundant.

D+ =DB

D—> B For this FD calculate D+ and try to derive C from D without help of D>B
is it possible? Yes, then it is redundant.

D+ = DABC



Canonical Cover (Fc) of FDs
Hence Gc for given FD set G = { A>B, A >C, D>A, D>B}is

Gc={A>B, A >C, D>A}

Now, Compare Fc and Gc
Fc={A—>B,A =>C, D2>A, D2>E}
Gc={A>B,A>C, DDA}

a) FcoversG

b) GcoversF

c) F&Gareequal
d) None

Answer is d) None



Relational Database Design

The algorithm for relational database design involves a series of steps to ensure
that the database is well-structured, follows normalization principles, and maintains

data integrity. The goal is to minimize redundancy, prevent anomalies, and optimize
query performance.

Algorithm for Relational Database Design

Step 1: Requirement Analysis
= |dentify the data that needs to be stored.
=  Determine the relationships among different data entities.
= Understand business rules and constraints.

Step 2: Construct an Entity-Relationship (ER) Model
= |dentify entities and attributes.
= Define primary keys for each entity.
= Establish relationships (one-to-one, one-to-many, many-to-many).
=  Draw an ER diagram to visualize data organization.

Step 3: Convert ER Model to Relational Schema
= Convert entities into tables.
= Convert relationships into foreign key constraints.
= Handle many-to-many relationships using bridge tables.



Relational Database Design

Define Functional Dependencies
Identify functional dependencies (FDs) among attributes.
Determine how attributes depend on primary keys.

Normalize the Database

First Normal Form (1NF) — Remove duplicate columns and ensure atomicity.
Second Normal Form (2NF) — Ensure no partial dependency on primary keys.
Third Normal Form (3NF) — Ensure no transitive dependencies.

Boyce-Codd Normal Form (BCNF) — Strengthen 3NF if necessary.

Further normalization (4NF, 5NF) if required.

Define Integrity Constraints

Primary Key Constraint — Ensure unique identification.

Foreign Key Constraint — Enforce referential integrity.

Unique, Not Null, and Check Constraints — Enforce business rules.



Step 7:

Relational Database Design

Indexing and Query Optimization

Create indexes on frequently searched columns.

Use denormalization if necessary for performance tuning.
Optimize SQL queries for faster execution.

Implement the Database

Use SQL commands (CREATE TABLE, ALTER TABLE, etc.) to implement the
schema.

Load initial data into tables.

Test and Validate

Insert sample data and test constraints.

Check for anomalies in insertion, deletion, and updates.
Verify data integrity and consistency.



